Development of a Subgrade Drainage Model for Unpaved Roads

FROST

BOIL

HEAD

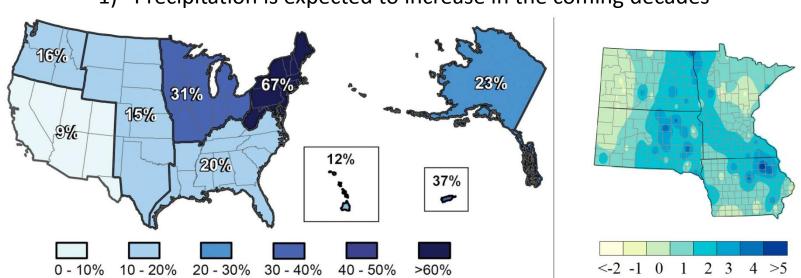
PI: Prof. Thanos Papanicolaou

Co-Pls: Dr. Filippo Bressan, Dr. Doug Schnoebelen Dr. Chris Wilson

Ames, IA 28 September 2012

Problem Statement

The combination of subbase moisture and subbase composition leads to the formation of frost boils


- Frost season occurs every year in early spring
- Frost boils usually reoccur at the same locations
- Poor drainage induce fluidization pipes

Problem Statement: it's even worse!

In addition:

1) Precipitation is expected to increase in the coming decades

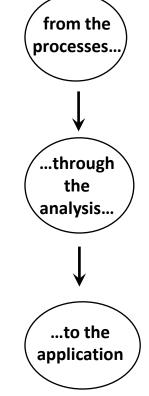
2) The subbase soil composition remains unaccounted for in the design in Iowa unpaved roads

Objectives

Boils formation is inevitable with gravel roads, but the extent of impact can be minimized considerably

To achieve this goal we need to:

Objective 1:


Determine if county roads are exhibiting moisture related distress or frost boil failure that can be attributed to poor drainage performance.

Objective 2:

Determine whether there are design and/or maintenance alternatives that will improve subgrade drainage performance.

Objective 3:

Develop a model for evaluating post-construction subdrain performance under saturated and unsaturated conditions.

Tasks overview

Threefold approach:

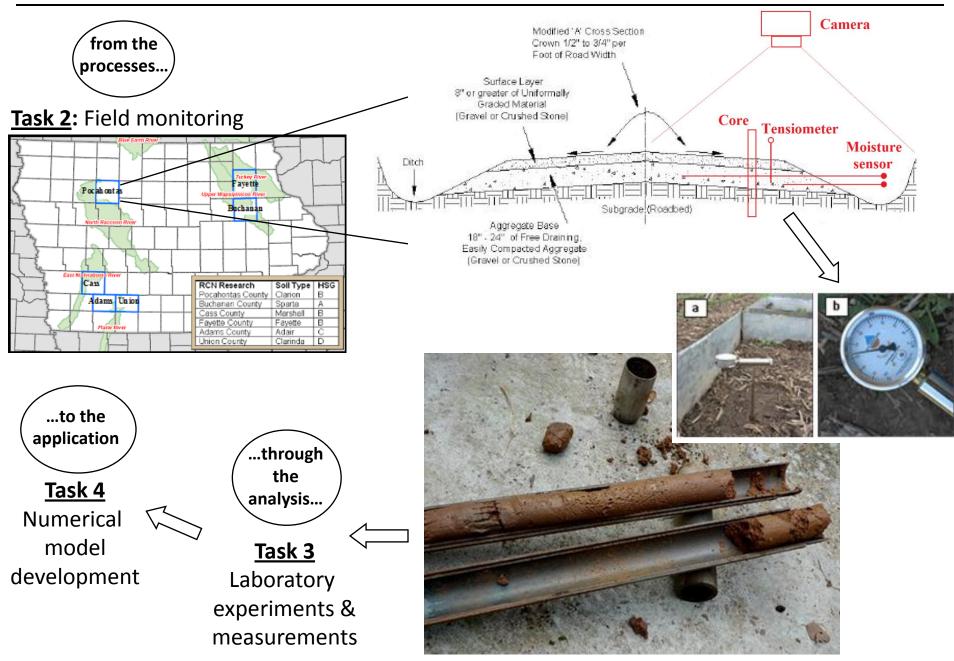
The combination of field surveys, laboratory experiments and numerical modeling is the winning strategy to succeed

<u>Tasks</u>	<u>Objective</u>	<u>Approach</u>
1. Establish a Technical Advisory Committee (TAC)		
 Determine which county roads may be prone to frost boil failure due to poor subgrade drainage performance 	Obj. 1	Field
3. Determine whether there are design/maintenance that will improve drainage	Obj. 2	Lab
4. Develop a model for evaluating post-construction subdrain performance	Obj. 3	РС
5. Preparation of specific guidelines		

Tasks description

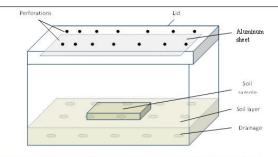
Task 1. Establish a Technical Advisory Committee (TAC)

- To discuss results, receive feedback
- Eng. Wade Weiss, County Engineer for Greene County
- Eng. Dave Barrett, County Engineer for Van Buren County



Task 2. Determine which county roads may be prone to frost boil failure due to poor subgrade drainage performance

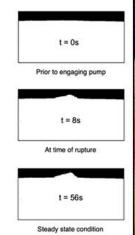
- Develop an experimental matrix to incorporate the control variables (soil texture, surrounding land cover, rainfall intensities, etc.)
- Possible selected Counties, which represent the four Hydrologic Soil Groups (HSGs) are: Buchanan, Fayette, Pocahontas, Cass, Adams and Union.
- Continuous monitoring stations will be installed and cores will be periodically extracted


Tasks description – Field

Tasks description – Lab

Task 3 Laboratory experiments & measurements to test design/maintenance alternatives

1	IDOT (2011) Standard Road Plans	40-80% hard stone/20-60% sand/8-15% fines
2	Geotextiles	Woven/Nonwoven
3	Polyacrylamide (PAM)	Liquid/Powder



Double Ring Infiltrometers Hydraulic conductivity

Sand & Rhodamine Fluidization and boils

Styrofoam box in the ice room Artificial freeze-thaw cycle

Tasks description – Alternative design

PAMI

nolvacrylamide, CH2CHCONH

NET WT .: 20KG

Task 3 Laboratory experiments & measurements to test design/maintenance alternatives

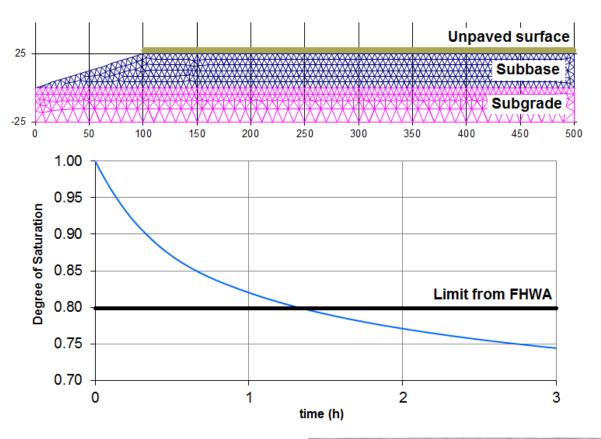
Polyacrylamide (PAM)

non-toxic organic polymer used for a variety of purposes

Non agricultural uses of PAM include:

- 1) Waste and potable water treatment
- 2) Processing and washing of fruits and vegetables
- 3) Dust control on unpaved roads in arid climate

The main agricultural use of PAM is for stabilizing soil and preventing erosion:


1) As a soil conditioner on farm land and construction sites for erosion control

PAM may be a cost-effective practice to minimize boil formation in unpaved roads and increase their expected life

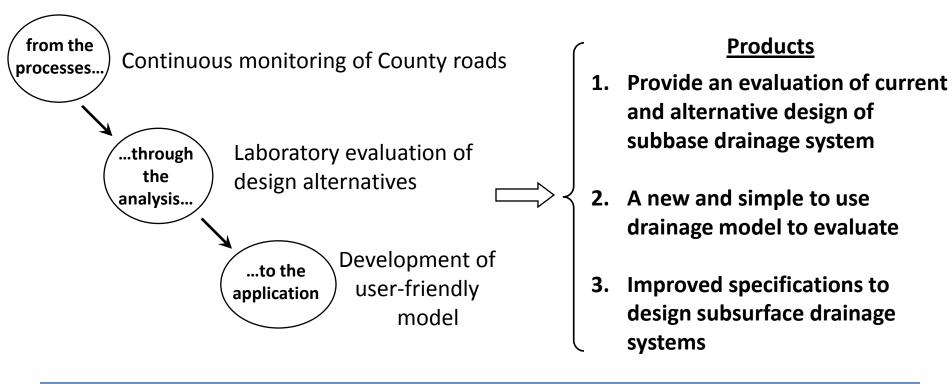
Tasks description – PC

Task 4 Develop a model for evaluating post-construction subdrain performance

Quality of Drainage	Time to Drain						
Excellent	Less than 2 hours						
Good	2 to 5 hours						
Fair	5 to 10 hours						
Poor	Greater than 10 hours						
Very Poor	Much greater than 10 hours						

Starting point: MNDRAIN (Voller, 2003)

Improvements will allow for:


1. Simulation of unsaturated flow through the subbase

2. Modeling of frost boils formation

3. Widespread use by IDOT and County engineers.

Summary

Task	Months																		
#		Semester 1					Semester 2						Semester 3						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Task 1																			
Task 2																			
Task 3																			
Task 4																			
Task 5																			

Thank you for your attention